Control of finger grip forces in overarm throws made by skilled throwers.
نویسندگان
چکیده
In an overarm throw, as the hand opens and the ball rolls along the fingers, the ball exerts a back force on the fingers. Previous studies suggested that skilled throwers compensate for this back force by producing an appropriate finger flexor torque to oppose the back force, but it was unclear how this is controlled by the CNS. We investigated whether the increase in finger flexor torque is timed precisely to occur late in the throw as the fingers open or whether the increase occurs throughout the throw to anticipate the increase in hand acceleration. Recreational ball players threw balls of different weights and diameters at different speeds from both a sitting and standing position while arm joint rotations were recorded with the search-coil technique. Force transducers were taped to the distal and middle phalanges of the middle finger and subjects released the ball from this finger. Passive forces on the finger were also recorded in "fake" throws in which the ball was taped to the finger and subjects did not grip the ball. These skilled throwers correctly anticipated the magnitude of the back force from the ball on the finger because the mean amplitude of finger extension did not increase in throws made with a large range of increasing back forces. This was achieved by subjects gripping the ball during the backswing with a force proportional to ball weight and intended ball speed (acceleration) and progressively increasing the grip force throughout the backswing and forward throw. The magnitude of this grip force during the forward throw was not affected by ball texture. After ball release from the fingertip, the finger flexed in proportion to the peak force on the finger before ball release. It is concluded, in a skilled fast overarm throw where large, fast-changing forces on the fingers result from the sum of motions at all arm joints, that finger flexor torque is progressively increased throughout the throw in an anticipatory (predictive) fashion to counteract the progressively increasing back force from the ball.
منابع مشابه
Increased variability in finger position occurs throughout overarm throws made by cerebellar and unskilled subjects.
We investigated the ability of cerebellar patients and unskilled subjects to control finger grip position and the amplitude of finger opening during a multijoint overarm throw. This situation is of interest because the appropriate finger control requires predicting the magnitude of back forces from the ball on the finger throughout the throw and generating the appropriate level and rate of chan...
متن کاملFailure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws.
We investigated the idea that the cerebellum is required for precise timing of fast skilled arm movements by studying one situation where timing precision is required, namely finger opening in overarm throwing. Specifically, we tested the hypothesis that in overarm throws made by cerebellar patients, ball high-low inaccuracy is due to disordered timing of finger opening. Six cerebellar patients...
متن کاملPrediction and compensation by an internal model for back forces during finger opening in an overarm throw.
Previous studies have indicated that timing of finger opening in an overarm throw is likely controlled centrally, possibly by means of an internal model of hand trajectory. The present objective was to extend the study of throwing to an examination of the dynamics of finger opening. Throwing a heavy ball and throwing a light ball presumably require different neural commands, because the weight ...
متن کاملSkilled throwers use physics to time ball release to the nearest millisecond.
Skilled throwers achieve accuracy in overarm throwing by releasing the ball on the handpath with a timing precision as low as 1 ms. It is generally believed that this remarkable ability results from a precisely timed command from the brain that opens the fingers. Alternatively, precise timing of ball release could result from a backforce from the ball that pushes the fingers open. The objective...
متن کاملControl of joint rotations in overarm throws of different speeds made by dominant and nondominant arms.
We tested the hypothesis that dominant and nondominant overarm throws of different speeds are made by time-scaling of joint rotations, i.e., by joint rotations that have the same positions and amplitudes but that are scaled in time. Eight skilled subjects stood and made overarm throws with both their dominant and nondominant arms. Six joint rotations were computed from recordings of arm segment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 86 6 شماره
صفحات -
تاریخ انتشار 2001